Abstract

Abstract We investigate the utility of Wishart processes (WPs) for estimating time-varying functional connectivity (TVFC), which is a measure of changes in functional coupling as the correlation between brain region activity in functional magnetic resonance imaging (fMRI). The WP is a stochastic process on covariance matrices that can model dynamic covariances between time series, which makes it a natural fit to this task. Recent advances in scalable approximate inference techniques and the availability of robust open-source libraries have rendered the WP practically viable for fMRI applications. We introduce a comprehensive benchmarking framework to assess WP performance compared with a selection of established TVFC estimation methods. The framework comprises simulations with specified ground-truth covariance structures, a subject phenotype prediction task, a test-retest study, a brain state analysis, an external stimulus prediction task, and a novel data-driven imputation benchmark. The WP performed competitively across all the benchmarks. It outperformed a sliding window (SW) approach with adaptive cross-validated window lengths and a dynamic conditional correlation (DCC)-multivariate generalized autoregressive conditional heteroskedasticity (MGARCH) baseline on the external stimulus prediction task, while being less prone to false positives in the TVFC null models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.