Abstract

In this chapter, the time-, stress-, and cycle-dependent matrix multicracking of fiber-reinforced ceramic-matrix composites (CMCs) with the interface debonding, interface wear, interface oxidation, and fiber fracture is investigated. The shear-lag model combined with the interface debonding, interface wear, interface oxidation, fiber fracture models, and the fiber/matrix interface debonding criterion is adopted to determine the microstress field of the damaged fiber-reinforced CMCs. The effects of the fiber volume and interface shear stress in the debonding and oxidation region, the interface debonding energy, the oxidation temperature, and time on the matrix multicracking, interface debonding and oxidation, and fiber fracture are discussed. The experimental matrix multicracking evolution of unidirectional C/SiC, SiC/SiC, mini-SiC/SiC, SiC/CAS, SiC/CAS-II, and SiC/borosilicate composites is predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.