Abstract
This paper presents a hybrid evolutionary method for identifying a system of ordinary differential equations (ODEs) to predict the small-time scale traffic measurements data. We used the tree-structure based evolutionary algorithm to evolve the architecture and a particle swarm optimization (PSO) algorithm to fine tune the parameters of the additive tree models for the system of ordinary differential equations. We also illustrate some experimental comparisons with genetic programming, gene expression programming and a feedforward neural network optimized using PSO algorithm. Experimental results reveal that the proposed method is feasible and efficient for forecasting the small-scale traffic measurements data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.