Abstract
The time-series nature of mortality rates lends itself to processing through neural networks that are specialized to deal with sequential data, such as recurrent and convolutional networks. Although appealing intuitively, a naive implementation of these networks does not lead to enhanced predictive performance. We show how the structure of the Lee Carter model can be generalized, and propose a relatively simple convolutional network model that can be interpreted as a generalization of the Lee Carter model, allowing for its components to be evaluated in familiar terms. The model produces highly accurate forecasts on the Human Mortality Database, and, without further modification, generalizes well to the United States Mortality Database.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.