Abstract

In this paper, we focus on the prediction method of building energy consumption time series. The building energy consumption data can be regarded as a time series, which is usually nonlinear and non-stationary. Traditional time series analysis model has lower prediction accuracy. Then the machine learning method, especially support vector regression algorithm always has better performance to deal with non-stationary and nonlinear time series. So the support vector regression algorithm is applied to develop building energy consumption time series model. The model is applied in different buildings. Experimental results show the prediction accuracy of the model is better than traditional time series analysis model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.