Abstract

Time-series analysis and network analysis are now used extensively in diverse areas of science. In this paper, we applythese techniques to quantum dynamics in an optomechanical system: specifically, the long-time dynamics of the mean photon number in an archetypal tripartite quantum system comprising a single-mode radiation field interacting with a two-level atom and an oscillating membrane. We also investigate a classical system of interacting Duffing oscillators which effectively mimics several of the features of tripartite quantum-optical systems. In both cases, we examine the manner in which the maximal Lyapunov exponent obtained from a detailed time-series analysis varies with changes in an appropriate tunable parameter of the system. Network analysis is employed in both the quantum and classical models to identify suitable network quantifiers which will reflect these variations with the system parameter. This is a novel approach towards (i) examining how a considerably smaller data set (the network) obtained from a long time series of dynamical variables captures important aspects of the underlying dynamics, and (ii) identifying the differences between classical and quantum dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.