Abstract

Abstract Fractures continuously extend and expand along bedding shale formations under the action of drilling fluid and eventually form a complex fracture network, which greatly reduces the strength of the rock. To determine the effect of the drilling fluid action time on the physical and mechanical properties of shale, nuclear magnetic resonance tests are carried out on shale soaked in oil-based drilling fluid for different soaking times. The fluid absorption rate of shale takes the form of a power function. The equations relating the shale mass, porosity, and permeability to soaking time are established. Then, in a sonic time-difference test, the change in the dynamic elastic parameters with the immersion time are observed. According to a triaxial strength test, the failure form and the deterioration degrees of the layered shale in different loading directions with immersion time are analyzed. Numerical simulation of the deterioration degree of shale under different water content conditions is carried out. When the water content increases, the collapse density of the surrounding rock of the well wall increases significantly. Finally, considering the anisotropy of bedding shale, the inclination angle, azimuth angle, and drilling fluid immersion time are substituted into the rock mechanics parameter deterioration model, the three pressure profiles of the formation are corrected, and the safe drilling fluid density window of the target interval is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.