Abstract

This paper presents analytic derivation of dynamic behavior of a liniearized micro-electro-mechanical resonator. The parametric oscillation results from a displacement-dependent electrostatic force generated by oscillation of a microbeam. The utilized device is a MEMS with a time-varying capacitor. The stability and steady state dynamic behavior of the MEMS has been analyzed without polarization voltage. The main characteristic of the no-polarization model is effects of parameters in stability of the system. A set of stability charts is provided for prediction of the boundary between the stable and unstable domains for the principal resonance. Applying perturbation method, analytical equations are derived to describe both the steady state and time response of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.