Abstract

We have investigated dynamics of different localized exciton magnetic polarons (LEMPs) in Cd0.70Mn0.30Te spin glass (SG) compound below the freezing temperature Tf in the crystal regions, where various microscopic magnetic spin states (MMSSs), namely, “loose” spins, finite, and infinite clusters, are formed. It was shown that there is a broad distribution of the LEMPs lifetimes. The presence of the long-lived LEMPs is caused by the admixture of the optically active bright exciton states to the dark exciton states, i.e., the “brightening” of the dark LEMPs which exist along with the bright LEMPs. The lifetimes of the dark LEMPs correspond to hundreds of nanoseconds. It was found that the time decay of photoluminescence band intensity is approximated by the sum of two functions: a single exponential function and the Kohlrausch–Williams–Watts stretched exponential function. The stretched exponential function describes the recombination processes of the LEMPs formed in the crystal regions of the finite clusters as well as the infinite cluster. This reflects the appearance of spatially heterogeneous dynamics in Cd0.70Mn0.30Te SG compound below Tf which is due to the disorder in the spin distribution caused by the formation of different MMSSs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.