Abstract

AbstractTime-resolved variable stripe length (VSL) experiments on a set of silicon nanocrystal waveguides obtained by plasma enhanced chemical vapor deposition (PECVD) have revealed a fast recombination dynamics (20 ns) related to population inversion under 6 ns optical pumping at 355 nm. Modal gain values about 10 cm-1 have been measured at 760 nm by VSL technique for the fast recombination component while optical losses about 15 cm-1 are measured for the integrated signal in the slow (lifetime of about 10 μs) recombination tail. Threshold behavior in the emission intensity together with a pumping length and pumping power dependence of both the intensity and the time duration of the fast recombination component has been observed. These results are explained within an effective four level model to describe the strong competition among different Auger processes and stimulated emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.