Abstract

The Cryogenic Dark Matter Search (CDMS) utilizes large mass, 3″ diameter×1″ thick target masses as particle detectors. The target is instrumented with both phonon and ionization sensors, the later providing a ∼1 V cm−1 electric field in the detector bulk. Cumulative radiation exposure which creates ∼200×106 electron-hole pairs could be sufficient to produce a comparable reverse field in the detector thereby degrading the ionization channel performance, if it was not shielded by image charges on the electrodes. To study this, the existing CDMS detector Monte Carlo has been modified to allow for an event by event evolution of the bulk electric field, in three spatial dimensions. Surprisingly, this simple model is not sufficient to explain the degradation of detector performance. Our most recent results and interpretation are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.