Abstract

A numerical method for solving 3D unsteady potential flow problem of ship advancing in waves was put forward. The flow field was divided into an inner and an outer domain by introducing an artificial matching surface. The inner domain was surrounded by a ship-wetted surface and a matching surface as well as part of the free surface. The free-surface condition for the inner domain was formulated by perturbation about the double-body (DB) flow assumption. The outer domain was surrounded by a matching surface and the rest had a free surface as well as an infinite far-field radiation boundary. The free-surface condition for the outer domain was formulated by perturbation of the uniform incoming flow. The simple Green function and transient free-surface Green function were used to form the boundary integral equation (BIE) for the inner and outer domains, respectively. The Taylor expansion boundary element method (TEBEM) was adopted to solve the DB flow and inner-domain and outer-domain unsteady flow BIE. Matching conditions for the inner-domain flow and outer-domain flow were enforced by the continuity of velocity potential and normal velocity on the matching surface. Direct pressure integration on the ship-wetted surface was applied to obtain the first- and second-order wave forces. The numerical prediction on the displacement, acceleration and added resistance of the 14000-TEU container ship at different forward speeds were investigated by the proposed TEBEM method. Reynolds-Averaged Navier–Stokes (RANS) equations based on Computational Fluid Dynamics (CFD) method were adopted to compare with TEBEM method. The physical tank experiment results also validated the accuracy of the numerical tank results. Compared with the experimental solutions, TEBEM obtained good agreement with the RANS CFD method. TEBEM, however, was much more efficient and robust.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.