Abstract

A novel finite-difference time-domain formulation for the modeling of electromagnetic wave propagation in frequency-dispersive liquid crystals with random orientation is presented. The dispersion of the complex ordinary and extraordinary permittivities of nematic liquid crystals is described by a generalized model based on the sum of partial fractions. The proposed dispersive model encompasses traditional approaches, such as Drude, Drude–Lorentz, and modified-Lorentz functions; it can also capture arbitrary dispersion properties of experimentally characterized nematic mixtures via the vector fitting technique. The accuracy of the formulation is demonstrated in a series of benchmark examples in optical and terahertz frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.