Abstract

Motivated by the lack of microeconomic models that optimize time-dependent transit fares based on realistic demand formulations, this paper presents a microeconomic model for the design of a time-dependent transit pricing scheme considering elastic and spatiotemporally distributed demand. To model the spatial distribution of demand, a transit line with multiple origin–destination pairs is considered. To model the cyclical demand fluctuations, transit operations in one day are divided into multiple time periods. In the proposed model we optimize fares, headway, vehicle capacity, and maximum fleet size, with the objective of maximizing social welfare, subject to fleet size and vehicle capacity constraints. We find time-dependent pricing could avoid cross-subsidization among travelers in different time periods. Under both pricing schemes, the time-dependent headways satisfy the same optimality condition: the total rider waiting cost equals the total fixed cost on the supplier side. We also demonstrate that both resource constraints (vehicle capacity and fleet size) can be binding in multiple time periods, unlike the usual assumption in the literature that resource constraints are binding only in the period with the highest demand. Two extensions (considering a financial constraint and a variable roundtrip time) are also investigated. The developed models can be used to facilitate the design of time-dependent pricing schemes for practical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.