Abstract

The specific time-dependent deformation response of amorphous poly(lactic acid) (PLA) is known to lead to rapid failure of these materials in load-bearing situations. We have investigated this phenomenon in uniaxial compression on P(L)DLLA samples with various molecular weights. The experiments revealed a strong dependence of the yield stress on the applied strain rate. Lower molecular weights showed identical deformation kinetics as higher molecular weights, albeit at lower stress values. This dependence on molecular weight was incorporated into an Eyring-equation by introducing mobility through a virtual temperature that is shifted by the deviation of the Tg from Tg,∞. Stress-dependent lifetime of polymer constructs was described by the use of this modified Eyring-equation, combined with a critical plastic strain. This model proves useful in predicting the molecular weight dependence of the time to failure, although it slightly overestimates life time at low stress levels for a material with very low molecular weight. The versatility of the model is demonstrated on e-beam sterilized PLDLLA, where the resulting reduction in molecular weight induces a substantial decrease in lifetime. A single Tg measurement provides sufficient information to predict the decrease in lifetime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.