Abstract
The mass fluctuations in damped reactions of16O+16O are studied in an extended time-dependent Hartree-Fock theory. The theory determines the time evolution of a two-body density matrix as well as that of a one-body density matrix, providing us with a microscopic way to calculate the fluctuations of one-body quantities. The results of the theory are compared with those obtained in a transport model. It is found that the dispersions in fragment mass calculated in the two models are of the same order of magnitude and much larger than those calculated in the time-dependent Hartree-Fock theory. The differences between the microscopic theory and the transport model are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.