Abstract
We study the biased random walk where at each step of a random walk a “controller” can, with a certain small probability, move the walk to an arbitrary neighbour. This model was introduced by Azar et al. [STOC’1992]; we extend their work to the time dependent setting and consider cover times of this walk. We obtain new bounds on the cover and hitting times. Azar et al. conjectured that the controller can increase the stationary probability of a vertex from p to p 1-ε ; while this conjecture is not true in full generality, we propose a best-possible amended version of this conjecture and confirm it for a broad class of graphs. We also consider the problem of computing an optimal strategy for the controller to minimise the cover time and show that for directed graphs determining the cover time is PSPACE -complete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.