Abstract

Time delays in fission induced by bombardment of Mo with 170- and 180-MeV ${}^{32}$S, 225- and 240-MeV ${}^{48}$Ti, and 300-MeV ${}^{58}$Ni have been measured by observation of crystal blocking of fission fragments. In contrast to earlier measurements with a W target, the results are consistent with fission of a compound nucleus in competition with mainly neutron emission. Most of the fissions happen on a time scale much shorter than attoseconds but there is a significant component of fission with much longer lifetimes. The measurements are reproduced with a standard statistical model, including a Kramers correction to fission widths from the viscosity of hot nuclear matter. These new results support the interpretation of our earlier measurements with a W target, which indicate that there is a transition in heavy-ion-induced fission at large atomic number and mass, from multichance fission in the standard Bohr-Wheeler picture to fission without formation of a compound nucleus. The process is slowed down by nuclear viscosity, with measured delays of order attoseconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.