Abstract
The assumption of bounded utility function resolves the St. Petersburg paradox. The justification for such a bound is provided by Brito, who argues that limited time will bound the utility function. However, a reformulated St. Petersburg game, which is played for both money and time, effectively circumvents Brito's justification for a bound. Hence, no convincing justification for bounding the utility function yet exists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.