Abstract
We deposited defined amounts of [C1C1Im][Tf2N] on Au(111) at different temperatures and investigated the morphology and wetting behavior of the deposited films by atomic force microscopy. For multilayer coverages, we observe a drastically different growth behavior when comparing deposition at room temperature (RT) and deposition below 170 K followed by slow annealing to RT. Upon deposition at RT, we find the formation of 2–30 nm high and 50–500 nm wide metastable 3D droplets on top of a checkerboard-type wetting layer. These droplets spread out into stable 2D bilayers, on the time scale of hours and days. The same 2D bilayer structure is obtained after deposition below 170 K and slow annealing to RT. We present a statistical analysis on the time-dependent changes of the shape and volume of the 3D droplets and the 2D bilayers. We attribute the stabilization of the 2D bilayers on the wetting layer and on already formed bilayers to the high degree of order in these layers. Notably, the transformation process from the 3D droplets to 2D bilayer islands is accelerated by tip effects and also X-ray radiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.