Abstract

This paper presents a novel optimization algorithm for monitoring a complex water pipeline using Wireless Sensor Networks (WSN), in order to solve the trade-off between a timely and accurate detection of a leak, and an efficient utilization of the energy at the WSN’s nodes aimed at prolonging the WSN’s lifetime. The scheme relies on using vibration sensors of different sensitivities to detect vibrations due to a leak, and on exploiting duty-cycling, hierarchical adaptive sampling and wavelet-based signal compression, in order to reduce sensing, computation and communication energies. Given the constraints of a maximum allowable sensor energy, a limited time to detect a leak after it occurs, and an acceptable percentage of signal distortion due to compression, a new optimization-based backtracking learning algorithm is developed here that solves for the values of various monitoring parameters such that it satisfies all the given constraints. Developing such an optimization algorithm has also required performing a sensitivity analysis, i.e. investigating the effect of changing the key monitoring parameters on the performance of leak detection and energy consumption. Simulation results for various cases successfully demonstrate the effectiveness of the algorithm while supporting the prediction of the sensitivity analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.