Abstract
We investigated theoretically the applicability of an optically trapped cylindrical particle as a local probe in photonic force microscopy. To do this we calculated the far-field scattering from a subwavelength-sized dielectric cylinder in a highly focused laser field. From this we obtained interferometric three-dimensional-position detection signals and compared these to signals calculated for a spherical particle. We have calculated the accuracy to which the position of an optically trapped cylinder can be determined, as a function of the cylinder’s orientational fluctuations. The position accuracy is better than a few nanometers for tilt angle fluctuations up to several degrees. Our study is relevant for trapping experiments, where the influence of angle fluctuations needs to be estimated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.