Abstract

Friction plays a pivotal role in many phenomena of physical chemistry and has long been in the focus of research thereof. As a crucial parameter, frictions in membranes’ inner and/or outer surface can be minimized to reduce solvent inlet pressure and enlarge inner pore fluid flux, ideally reaching near frictionless transport of water at nanoscale. Inspired by the leaf structure of Tillandsia, a porous membrane with a rough surface and a hydrophilic inlet together with hydrophobic pore channels was designed and fabricated, based on covalent organic frameworks (COFs). Combined with COFs’ inherent highly oriented pore structures, the as‐made asymmetric membranes through chemical etching can minimize the solvent critical intrusion pressure and enable inner pore low friction water transport. Ultimately, obtained COF membranes succeeded in trapping fog from air and achieved a water harvesting rate (WHR) of 1570 mg cm‐2 h‐1, together with small molecular pollutants filtrated off in the meantime. Intriguingly, the synthesized asymmetric COF membranes illustrated unidirectional low friction water collecting and transporting features, the successful imitation of T. macdougallii. This work presents a practical strategy to construct functional porous membranes for low friction water collection and transport, and created a model paradigm to design fluid transporting pore channels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.