Abstract

We focus in this paper the problem of improving the semidefinite programming (SDP) relaxations for the standard quadratic optimization problem (standard QP in short) that concerns with minimizing a quadratic form over a simplex. We first analyze the duality gap between the standard QP and one of its SDP relaxations known as "strengthened Shor's relaxation". To estimate the duality gap, we utilize the duality information of the SDP relaxation to construct a graph G ?. The estimation can be then reduced to a two-phase problem of enumerating first all the minimal vertex covers of G ? and solving next a family of second-order cone programming problems. When there is a nonzero duality gap, this duality gap estimation can lead to a strictly tighter lower bound than the strengthened Shor's SDP bound. With the duality gap estimation improving scheme, we develop further a heuristic algorithm for obtaining a good approximate solution for standard QP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.