Abstract
Hot subdwarf B (sdB) stars are stripped helium-burning stars that are often found in close binaries, where they experience strong tidal interactions. The dissipation of tidally excited gravity waves alters their rotational evolution throughout the sdB lifetime. While many sdB binaries have well-measured rotational and orbital frequencies, there have been few theoretical efforts to accurately calculate the tidal torque produced by gravity waves. In this work, we directly calculate the tidal excitation of internal gravity waves in realistic sdB stellar models and integrate the coupled spin–orbit evolution of sdB binaries. We find that for canonical sdB (M sdB = 0.47 M ⊙) binaries, the transitional orbital period below which they could reach tidal synchronization in the sdB lifetime is ∼0.2 day, with weak dependence on the companion masses. For low-mass sdBs (M sdB = 0.37 M ⊙) formed from more massive progenitor stars, the transitional orbital period becomes ∼0.15 day. These values are very similar to the tidal synchronization boundary (∼0.2 day) evident from observations. We discuss the dependence of tidal torques on stellar radii, and we make predictions for the rapidly rotating white dwarfs formed from synchronized sdB binaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.