Abstract

The electronic structure of a Ti(3+) aqueous solution is studied by liquid-jet soft X-ray photoelectron (PE) spectroscopy. Measured valence and Ti 2p core-level binding energies, together with the Ti 2p resonant photoelectron (RPE) spectra and the derived partial electron-yield L-edge X-ray absorption (PEY-XA) spectra, reveal mixing between metal 3d and water orbitals. Specifically, ligand states with metal character are identified through the enhancement of signal intensities in the RPE spectra. An observed satellite 3d peak structure is assigned to several different metal-ligand states. Experimental energies and the delocalized nature of the respective orbitals are supported by ground-state electronic structure calculations. We also show that by choice of the detected Auger-electron-decay channel, from which different PEY-XA spectra are obtained, the experimental sensitivity to the interactions of the metal 3d electrons with the solvent can be varied. The effect of such a state-dependent electronic relaxation on the shape of the PEY-XA spectra is discussed in terms of different degrees of electron delocalization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.