Abstract

Monitoring of water contaminants implies a need for determining their dielectric response properties with respect to electromagnetic wave excitation at various frequencies. Iron is a naturally occurring water contaminant, which is the result of decaying vegetation and is at much higher concentrations than any other metal contaminant. The present study uses density functional theory (DFT) for the calculation of ground state resonance structure and stability analysis of Fe water complexes. The calculations presented are for excitation by electromagnetic waves at frequencies within the THz range. Dielectric response functions calculated by DFT can be used for the analysis of water contaminants. These functions provide quantitative initial estimates of spectral response features for subsequent adjustment with respect to additional information such as laboratory measurements and other types of theory-based calculations. In addition, with respect to qualitative analysis, DFT calculated absorption spectra provide for molecular level interpretation of response structure. The DFT software GAUSSIAN was used for the calculations of ground state resonance structure presented here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.