Abstract

The end effect of a linear induction motor (LIM) has been known for several decades, especially in high speed operation. The exit part of the primary is not dealt as extensively as the entry part because of its minor effect. However, the exit part is one of the keys to weaken the dolphin effect, which occurs in high speed operation. In this paper, the concept of the virtual primary core is introduced, and chamfering of the primary outlet teeth is proposed to minimize the longitudinal end effect at the exit zone. For this, LIM for the high-speed train is designed and analyzed by using finite element method. Results confirm that chamfering can improve thrust performance effectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.