Abstract

The maximum differential backlog (MDB), or “backpressure” control policy of Tassiulas and Ephremides has been shown to adaptively maximize the stable throughput of multihop wireless networks with random traffic arrivals and queueing. The practical implementation of the MDB policy in wireless networks with mutually interfering links, however, requires the development of distributed optimization algorithms. Within the context of code-division multiple-access (CDMA)-based multihop wireless networks, we develop a set of node-based scaled gradient projection power control algorithms which solves the MDB optimization problem based on the high-signal-to-interference-plus-noise ratio (SINR) approximation of link capacities using low communication overhead. We investigate the impact of the high-SINR approximation and the nonnegligible convergence time required by the power control algorithms on the throughput region achievable by the iterative MDB policy. We show that the policy can achieve at least the stability region induced by the high-SINR capacity region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.