Abstract
In this paper, we investigate a mobile relaying system assisted by an unmanned aerial vehicle (UAV) with a finite size of the buffer. Under the buffer size limit and delay constraints at the UAV relay, we consider a dual-hop mixed free-space optical/radio frequency (FSO/RF) relaying system (i.e., the source-to-relay and relay-to-destination links employ FSO and RF links, respectively). Taking an imbalance in the transmission rate between RF and FSO links into consideration, we address the trajectory design of the UAV relay node to obtain the maximum data throughput at the ground user terminal. Specifically, we classify two relaying transmission schemes according to the delay requirements, i.e., i) delay-limited transmission and ii) delay-tolerant transmission. Accordingly, we propose an iterative algorithm to effectively obtain the locally optimal solution to our throughput optimization problems and further present the complexity analysis of this algorithm. Through this algorithm, we present the resulting trajectories over the atmospheric condition, the buffer size, and the delay requirement. In addition, we show the optimum buffer size and the throughput-delay tradeoff for a given system. The numerical results validate that the proposed buffer-aided and delay-considered mobile relaying scheme obtains 223.33% throughput gain compared to the conventional static relaying scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.