Abstract
Through-thickness shear strain variation with speed/radius/friction ratio in cold rolled silicon steel under different asymmetric rolling modes was analyzed by finite element method (FEM). Cold rolling textures were also investigated quantitatively to correlate with the calculated shear strain. With increasing speed/radius/friction ratio, shear strain distribution under differential-speed and differential-radius rolling exhibits similar characteristic in contrast to differential-friction rolling. Unidirectional shear strain develops through sheet thickness when asymmetric speed and radius ratio exceeds 1.125, whereas it does not appear even at friction ratio of 1.5. Shear strain distribution dependent on asymmetric rolling modes can be well understood by forward and backward slip zones as well as roll pressure as a function of speed/radius/friction ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.