Abstract

The nanopore arrays were fabricated by two-step self-organized anodization of aluminum carried out in 0.3 M oxalic acid at the temperature of 20 °C. This relatively high temperature shortens significantly the anodizing time and allows to fabricate quickly thick through-hole membranes without the additional operating cost of a cooling circuit. The structural features of anodic porous alumina such as pore diameter, interpore distance, porosity, pore density and pore circularity were investigated at various durations of pore opening/widening process carried out in 5% H 3PO 4. An excellent agreement of AAO structural features measured in FE-SEM images of the studied samples with results from software calculations was observed. The pore shape can be monitored qualitatively by fast Fourier transforms (FFTs) and quantitatively by calculation the percentage of pore circularity. Additionally, the regularity of the hexagonal arrangement of nanopores in through-hole AAO membranes was compared for various opening/widening time ranging from 40 to 100 min. It was shown that three-dimensional (3D) representations of FE-SEM images and their surface-height distribution diagrams provide interesting information about the surface roughness evolution during the pore opening/widening process. A template-assisted fabrication of Ag and Sn nanowire arrays by electrochemical deposition into the pores of the prepared AAO templates was also successfully demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.