Abstract

Pulmonary arterial hypertension (PAH) is a progressive disease of excess vasoconstriction and vascular cell proliferation that results in increased pulmonary vascular resistance and right heart failure. We have previously shown (66) that tissue factor expression is increased in the abnormal vessels of patients and rats with PAH. We hypothesized that tissue factor and its downstream mediator, thrombin, would promote migration of endothelial cells (EC) and the vascular pathology of PAH. Immunostaining revealed EC and a fibronectin-enriched matrix within the "plexiform-like" lesions in a rat model of severe PAH. In a modified Boyden assay, protease-activated receptor 1 (PAR1; thrombin receptor) stimulation by agonist peptide or thrombin induced pulmonary microvascular EC (PMVEC) migration when the cells were interacting with fibronectin, but not with other extracellular matrix proteins. Thrombin/fibronectin-induced migration was confirmed in wound healing and angiogenesis assays and was abrogated by the PAR1 antagonist SCH79797 and soluble RGD peptide. This fibronectin dependence was unique to PAR1 activation; other EC agonists evaluated did not induce migration on any matrix, and 10% FBS stimulated similar levels of migration on all matrix proteins tested. Thrombin/fibronectin stimulated autophosphorylation of calcium/calmodulin dependent protein kinase II (CaMKII) in PMVEC, and inhibitors of CaMKII blocked thrombin-induced migration on fibronectin, but had no effect on migration induced by 10% FBS. In contrast, EC isolated from the proximal pulmonary artery migrated in response to most agonists independent of the matrix substrate. Our findings illustrate EC heterogeneity in a single tissue and indicate a novel role for CaMKII in mediating EC migration. Because PMVEC have been shown to have impressive proliferative potential, thrombin/fibronectin-stimulated migration of these cells to a site of injured endothelium is a potential mechanism by which thrombin contributes to the development of vascular lesions in PAH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.