Abstract

Convolutional neural network (CNN) based image segmentation has been widely used in analyzing medical images and benefited many real-world disease diagnosis applications. However, existing advanced CNN-based medical image segmentation models usually contain numerous parameters that require massive computation and memory, limiting the applicability of these models in the data-constrained or hardware-constrained environments. By leveraging the recently proposed neural architecture search (NAS), this paper presents a novel approach, dubbed Thrifty NAS, to design computation and memory-efficient models for medical image segmentation automatically. The searched models by Thrifty NAS are with much fewer parameters while retaining competitive performance. More specifically, we design a micro level space for cell structure search and a macro level cell path for better network structure modeling. Extensive experimental results in different medical image datasets verify the effectiveness of the proposed method with competitive segmentation performance, especially with minuscule neural architecture model size, i.e., 0.61M that is superior to U-Net (7.76 M) and UNet++ (9.04 M).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.