Abstract

A threshold start-up policy is appealing for manufacturing (service) facilities that incur a cost for keeping the machine (server) on, as well as for each restart of the server from its dormant state. Analysis of single product (customer) systems operating under such a policy, also known as the N-policy, has been available for some time. This article develops mathematical analysis for multiproduct systems operating under a cyclic exhaustive or globally gated service regime and a threshold start-up rule. It pays particular attention to modeling switchover (setup) times. The analysis extends/unifies existing literature on polling models by obtaining as special cases, the continuously roving server and patient server polling models on the one hand, and the standard M/G/1 queue with N-policy, on the other hand. We provide a computationally efficient algorithm for finding aggregate performance measures, such as the mean waiting time for each customer type and the mean unfinished work in system. We show that the search for the optimal threshold level can be restricted to a finite set of possibilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.