Abstract

The analysis of plant growth regulators presents a challenge due to their trace quantities and complex matrices. A novel, simple, and effective analytical method for the determination of three trace acidic plant growth regulators in Anoectochilus roxburghii (Wall.) Lindl was developed to address this issue. Three-phase hollow fiber liquid-phase microextraction combined with high-performance liquid chromatography was applied for the enrichment, purification, and determination of three acidic plant growth regulators, namely, indole-3-acetic-acid, indole-3-butyric-acid, and (+)-abscisic acid. The factors affecting extraction performance, including extractant species, pH of donor and acceptor phases, salt addition dosage, extraction time, temperature, and stirring rate, were investigated and optimized. Under optimum conditions, the proposed method provided good linearity (R2 , 0.9994-0.9999), low limit of detection (0.038-0.12ng/mL), and acceptable relative recoveries (56.7-117.6%). The enrichment factors were between 153 and 328. The developed method was successfully applied to the enrichment and determination of plant growth regulators in Anoectochilus roxburghii (Wall.) Lindl and exhibited increased purification capacity, higher sensitivity, and decreased organic solvent consumption compared with conventional sample preparation methods. This method may provide atesting platform for the monitoring of plant growth regulator residues, ensuring the safe and effective use of traditional Chinese medicine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.