Abstract

Based on the nonlinear resonators and self-collimation characteristics of light beams, we designed an all-optical photonic crystal beam splitter and switch. The proposed device consists of an input waveguide and three output waveguides connected to different ring resonators. Three pump beams transmit through different resonators via the self-collimation effect, and eight output states are realized by altering the intensity of the pump light. The proposed device works at the wavelength of 1629.57 nm, and the pump wavelength is located at 1240.00 nm. The transmittance contrast between the "on" and "off" states reached a maximum value of 124.0 and a minimum of 17.6. The minimal pump light intensity required to implement the performance is only ${0.162}\,\,{\rm W/}\unicode{x00B5}{\rm m}^2$0.162W/µm2, while the maximal value is about ${0.497}\,\,{\rm W/}\unicode{x00B5}{\rm m}^2$0.497W/µm2. Due to the small size of our proposed device and also its insensitivity to the pump light beams' incident location and spatial width within a certain degree, it has great potential application value in all-optical communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.