Abstract
We report a simple and facile hydrothermal pseudomorphic replacement route to synthesize three-dimensional (3D) ordered arrays of zeolite nanocrystals with uniform size and crystallographic orientation. We demonstrate this route by synthesizing analcime monoliths as an example using leucite crystals as precursors. The leucite crystals contain an inherent 3D ordered network of nanometer-sized lamellar twins. Such highly ordered 3D patterns were precisely preserved during hydrothermal pseudomorphic replacement reactions in pH buffered NaCl solutions, resulting in 3D ordered arrays of analcime nanocrystals. Moreover, these analcime nanocrystals have a uniform size and crystallographic orientation due to epitaxial nucleation and growth facilitated by the similarity of crystal lattice between leucite and analcime. The morphology of the nanocrystals is tunable by simply changing solution pH values. Mild acidic to mild alkaline conditions tend to produce cuboid-shaped nanocrystals, while strong alkaline conditio...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.