Abstract

A mathematical model for phase change heat transfer in cryosurgery was established. In this model, a fractal tree-like branched network was used to describe the complicated geometrical frame of blood vessel. The temperature distribution and ice crystal growth process in biological tissue including normal tissue and tumor embedded with two cryoprobes were numerically simulated. The effects of cooling rate, initial temperature and distance of two cryoprobes on freezing process of tissue were also studied. The results show that the ice crystal grows more rapidly in the initial freezing stage and then slows down in the following process, and the pre-cooling of cryoprobes has no obvious effect on freezing rate of tissue. It also can be seen that the distance of 10 mm between two cryoprobes is the most appropriate choice for operation effect in the range of operating conditions presented in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.