Abstract

In this article, we discuss a mechanical model for structural and remodeling analysis / simulation of cancellous bone, that takes into account tissue microstructure and residual stress. A three-dimensional lattice continuum is used as a structural model of cancellous bone with trabecular architecture, and its mechanical behavior is investigated concerning the dependence of structural parameters on the apparent mechanical properties of the tissue. Assuming the local uniform stress state to be an optimal stress state realized at the remodeling equilibrium, a remodeling rate equation is proposed to express the stress regulation process at the microstructural level for the three-dimensional lattice continuum. In terms of the lattice continuum, a vertebral body is modeled based on quantitative measurements of the trabecular architecture of the cancellous bone, and a remodeling simulation is conducted under the conditions of repetitive bending with compression. By comparison of the obtained distributions of the residual stress and the volume fraction with the experimental observations, the validity of the proposed model in predicting the adaptive remodeling of cancellous bone using a three-dimensional lattice continuum is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.