Abstract

This paper describes the development of a three-dimensional (3D) indentation test system capable of observing the distribution of mechanical properties in structural materials. Serial sectioning with destructive treatment has traditionally been used as a method for observing microstructure within materials in three dimensions. The serial sectioning methods using precision cutting has attracted particular attention as it enables the observation of large sample volumes. However, those methods can only observe the microstructure as image, not the mechanical properties such as hardness and elastic modulus. To measure the 3D distribution of the mechanical properties of the material, it is effective to combine repeated cutting and indentation tests on each cutting surface. Morever, combining the image observation and mechanical property tests could allow a more sophisticated analysis of the interior of material. To implement this method, we have constructed an indentation test system on a precision machine using a Berkovich indenter, micro-force sensor, and micro-movement stage.In order to achieve a 3D indentation test, it is considered necessary to unify the measurement positions in the depth direction. Furthermore, the unloading rate needs to be controlled in order to carry out stable indentation tests. Therefore, we propose a method of 3D indentation test that can precisely control the maximum depth of indentation and unloading speed.In this paper, we devise a method for driving the constructed system and a method for obtaining data and confirm the accuracy of these methods by experiment. In addition, we determine indentation depth and unloading speed which are suitable for our method by performing indentation tests on a block for ultra-microhardness. Finally, we practice 3D indentation test in which the cutting and indentation tests are repeated on specimens with different mechanical properties in the depth direction. Experimental results show that our indentation test system is appropriate to measure three-dimensional mechanical properties inside the material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.