Abstract

Electronic coupling with the support plays a crucial role in boosting the intrinsic catalytic activity of a single-atom catalyst. Herein, the three-dimensional (3D) hierarchical Co(OH)F nanosheet arrays modified by single-atom Ru (SA-Ru/Co(OH)F) are prepared by a facile one-step hydrothermal method under mild conditions, which exhibit excellent activity with an overpotential of 200 and 326 mV at 10 and 500 mA cm−2, respectively, as well as robust stability for oxygen evolution reaction (OER) in 1.0 mol L−1 KOH electrolyte. The study of electronic structures and surface chemical states before and after OER testing reveals that the strong electronic coupling between single-atom Ru and Co(OH)F induces the charge redistribution in SA-Ru/Co(OH)F and suppresses the excessive oxidation of Ru into higher valence state (more than +4) under high OER potential. This work provides a strategy to stabilize single-atom Ru by Co(OH)F that can enhance the activity and durability for OER under large current densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.