Abstract
Thermoplastic polymers can be classified into glassy polymers and crystalline polymers depending on their internal structures. Glassy polymers have a random coil structure in which molecular chains are irregularly entangled. Crystalline polymers can be regarded as a mixture consisting of glassy and crystalline phases where molecular chains are regularly folded. Moreover, the fracture of ductile polymers occurs at the boundary between regions with oriented and non-oriented molecular chains after neck propagation. This behavior stems from the concentration of craze, which is a type of microscopic damage typically observed in polymers. In this study, three-dimensional FE simulations coupled with a craze evolution equation are carried out for glassy and crystalline polymers using a homogenization method and models of ductile polymers based on crystal plasticity theory. We attempt to numerically represent the propagation of a high-strain-rate shear band and a high-craze-density region in the macroscopic structure and to directly visualize the orientation of molecular chains in glassy and crystalline phases. In addition, differences between the deformation behavior of glassy and crystalline polymers at both the macroscopic and microscopic scales are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.