Abstract

In a large laboratory plasma, reconnection of three-dimensional (3-D) magnetic fields is studied in the parameter regime of electron magnetohydrodynamics. A reversed magnetic field topology with two 3-D null points and a two-dimensional (2-D) null line is established, and its free relaxation is studied experimentally. Major new findings include the absence of tilting instabilities in an unbounded plasma, relaxation times fast compared to classical diffusion times, dominance of field line annihilation at the 2-D current sheet versus reconnection at 3-D null points, conversion of magnetic energy into electron thermal energy, and excitation of various microinstabilities. This first of four companion papers focuses on the magnetic field topology and dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.