Abstract

A novel and effective approach within the framework of the scaled boundary finite element method (SBFEM) is proposed for the damage analysis of structures in three dimensions. The integral-type nonlocal model is extended to SBFEM to eliminate the mesh sensitivity concerning the strain localization. In order to reduce the number of degrees of freedoms (DOFs), an automatic mesh generation algorithm using octree decomposition is employed to refine the localized damage process zone (DPZ), but no extra effort is required to deal with hanging nodes existing between adjacent subdomains with different sizes. A double-notched tension beam is simulated with two different meshes to illustrate the mesh-independence. Three benchmarks are modelled to further verify the effectiveness and robustness of the proposed approach. It is shown that the proposed computational approach is capable of accurately capturing the damage evolution under complicated boundary conditions, and the results agree well with the experimental observations and prior numerical simulations reported in the literatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.