Abstract

A novel method is described here that allows three-dimensional (3D) control of both chemistry and morphology by a series of wet chemical steps: the attachment of protein functionalized micron-sized beads onto a flat silicone surface that has been functionalized with a distinct chemical modification. Bovine serum albumin (BSA), laminin, or polylysine is covalently bound to 6.5-microm-diameter spherical beads. A chemical method is then used to bind these beads to a flat silicone surface that is subsequently functionalized with polylysine. This process leads to a nonspecific cell adhesive background on the flat surface (polylysine) with the option of differing chemistry on the third-dimension due to the protein BSA or laminin on the bead protruding from the surface. The beads do not detach during cyclic stretching in vitro. Neo-natal rat cardiac fibroblasts are cultured on the beaded surfaces and compared with fibroblasts cultured on nonbeaded, flat polylysine surfaces. Fibroblast plating density, integrin, and physical responses are examined as a function of varying the ligands on the beads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.