Abstract

Few neuroimaging anatomic studies to date have investigated in detail the point of entry of cortical bridging veins (CBVs) into the superior sagittal sinus (SSS). Although we know that most CBVs join the SSS at an acute angle opposite to the direction of SSS blood flow, the three-dimensional (3-D) spatial configuration of these venous confluences has not been studied previously. This anatomical information would be pertinent to several clinically applicable scenarios, such as in planning intracranial surgical approaches that preserve bridging veins; studying anatomical factors in the pathophysiology of SSS thrombosis; and when planning endovascular microcatheterization of pial veins to retrogradely embolize brain arteriovenous malformations (AVMs). We used the concept of Euclidean planes in 3-D space to calculate the arccosine of these CBV-SSS angles of confluence. To test the hypothesis that pial AVM draining veins may not be any more acutely angled or difficult to microcatheterize at the SSS than for normal CBVs, we measured 70 angles of confluence on magnetic resonance venography images of 11 normal, and nine AVM patients. There was no statistical difference between normal and AVM patients in the CBV-SSS angles projected in 3-D space (56.2° [SD = 22.4°], and 46.2° [SD = 22.3°], respectively; P > 0.05). Hence, participation of CBVs in drainage of pial AVMs should not confer any added difficulty to their microcatheterization across the SSS, when compared to the acute angles found in normal individuals. This has useful implications for potential choices of strategies requiring endovascular transvenous retrograde approaches to treat AVMs. Clin. Anat. 33:293-299, 2020. © 2019 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.