Abstract

A three-dimensional (3D) effective stress finite element analysis, modified to account for hydrofracturing and gassy soil behavior, is used to examine the potential for the venting of water and gas from a bedrock aquifer and through 13–14 m of low permeability clayey silt between the base of the excavation and the bedrock following excavation to about 24 m in an approximately 40 m thick clayey silt deposit. The clayey deposit contained sand lenses with dissolved gas. The analysis predicts that the exsolution of this dissolved gas, caused by a reduction in total stress due to the excavation, results in liquefaction of the sand in the lenses and consequent lateral deformations of the side slopes. The analysis predicts hydrofracturing through the remaining clayey silt when the excavation reaches its final depth and this explains the venting of water and gas from the underlying aquifer that was observed above a local bedrock high. The presence of gassy sand lenses created weak zones within the clayey deposit that influenced the path of the hydrofracturing. However, the analyses suggest that, for the depth of excavation and bedrock elevation examined, hydrofracturing and subsequent venting would have occurred even if there had been no sand lenses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.