Abstract

Several studies have analyzed the sexual dimorphism of the skeletal cranial airways. This study aimed to quantify the three-dimensional (3D) morphology of the soft tissues of the upper airways in a human population. We addressed hypotheses about morphological features related to respiratory and energetic aspects of nasal sexual dimorphism. We reconstructed 3D models of 41 male and female soft tissue nasal airways from computed tomography data. We measured 280 landmarks and semilandmarks for 3D-geometric morphometric analyses to test for differences in size and 3D morphology of different functional compartments of the soft tissue airways. We found statistical evidence for sexual dimorphism: Males were larger than females. 3D features indicated taller and wider inflow tracts, taller outflow tracts and slightly taller internal airways in males. These characteristics are compatible with greater airflow in males. The differences in 3D nasal airway morphology are compatible with the respiratory-energetics hypothesis according to which males differ from females because of greater energetic demands. Accordingly, structures related to inflow and outflow of air show stronger signals than structures relevant for air-conditioning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.