Abstract
We propose a novel three-chip differential phase-shift keying (DPSK) maximum likelihood sequence estimation (MLSE) for chromatic-dispersion (CD) and first-order polarization-mode-dispersion (PMD) compensation to extend the transmission reach of the DPSK signal. Such a technique searches the most probable path through the trellis for DPSK data sequence estimation by exploiting the phase difference between not only the adjacent optical bits but also the bits that are one bit slot apart. The proposed scheme significantly outperforms conventional two-chip DPSK MLSE in CD and PMD compensation. We show that the proposed three-chip DPSK MLSE can enhance the CD tolerance of 10 Gbit/s DPSK signal to 2.5 times of that by using two-chip DPSK MLSE and can bound the penalty for 100 ps differential group delay by 1.4 dB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.